An adaptive cache coherence protocol optimized for migratory sharing

This alert has been successfully added and will be sent to: You will be notified whenever a record that you have chosen has been cited.

To manage your alert preferences, click on the button below. Manage my Alerts

New Citation Alert!

Abstract

Parallel programs that use critical sections and are executed on a shared-memory multiprocessor with a write-invalidate protocol result in invalidation actions that could be eliminated. For this type of sharing, called migratory sharing, each processor typically causes a cache miss followed by an invalidation request which could be merged with the preceding cache-miss request.

In this paper we propose an adaptive protocol that invokes this optimization dynamically for migratory blocks. For other blocks, the protocol works as an ordinary write-invalidate protocol. We show that the protocol is a simple extension to a write-invalidate protocol.

Based on a program-driven simulation model of an architecture similar to the Stanford DASH, and a set of four benchmarks, we evaluate the potential performance improvements of the protocol. We find that it effectively eliminates most single invalidations which improves the performance by reducing the shared access penalty and the network traffic.

References

Anant Agarwal, Beng-Hong Lim, David Kranz, and John Kubiatowicz. APRIL: A Processor Architecture for Multiprocessing. In Proceedings of the 17th Annual international Symposium on Computer Architecture, pages i04-114, May 1990.